STATIONARY WAVES (Waves and Vibration)

e-content for B.Sc Physics (Honours) B.Sc Part-I Paper-I

Dr. Ayan Mukherjee, Assistant Professor, Department of Physics, Ram Ratan Singh College, Mokama. Patliputra University, Patna

STATIONARY WAVES

1.	A so stret fund 100 F mate	nome ched amen Iz. De rial o	eter wire by a we tal freque etermine t f wire.	of ler eight o ency o he line	ngth 0.5 m is of 5 kg. The f vibration is ear density of	For Sol	mula : n ution :	=	$\frac{1}{2l}\sqrt{\frac{T}{m}}$	
Giv	ren : l T	= = =	0.5 m Mg = 100 Hz	5 × 9.	8 N		n	=	$\frac{1}{2l}\sqrt{\frac{\mathrm{T}}{\mathrm{m}}}$	1
To	Find :	=	?				Since, n	₁ ∝	$\frac{1}{l_1}$ and $n_2 \propto$	$\frac{1}{l_2}$
For	mula :		•				n1		la	
	n	=	$\frac{1}{2l}\sqrt{\frac{T}{m}}$			 	$\frac{n_1}{n_2}$ $n_1 l_1$ 100 p	=	$\frac{l_2}{l_1}$ $n_2 l_2$	
Sol	ution :					•••	100 111		90 II ₂	
	n	=	$\frac{1}{2l}\sqrt{\frac{\mathrm{T}}{\mathrm{m}}}$				n ₂	=	$\frac{100}{90}$ n ₁	
÷	100	=	$\frac{1}{2 \times 0.5}$	$\frac{5 \times 9.8}{m}$	$=\sqrt{\frac{49}{m}}$	÷	$l_1 > l_2$ the	= hen	$\frac{10}{9}n_1$ $n_2 > n_1$	
	Squaring both sides, we get				$n_{2}^{1} - n_{1}^{2}$	=	8			
	(100)²	=	<u>49</u> m			.÷.	$\frac{10}{9}n_1 - n_1$	=	8	
	m	=	$\frac{49}{(100)^2}$	=	0.0049 kg/m	n ₁	$\left(\frac{10}{9}-1\right)$	=	8	
	m	=	0.0049 k	g/m		 	n ₁ n	=	9 x 8 = n =	72 Hz 72 Hz
2. Giv	A son a res its le per s of tu ren : l_1 l_2 N Find : n_1	nome onanc ngth econd ning = = = =	ter wire 10 ce with a is decreas are heard fork. 100 cm 100 - 10 $n_1 \sim n_2$?	00 cm 1 tuning ed by 3 I. Find = = =	ong produces g fork. When 10 cm, 8 beats the frequency 90 cm 8s ⁻¹	3. Giv	Two with having fundam 1 : 2, a compared of the second se	ires the nent nd e rat =	of the same e same rad: al frequence tension in io of their lo $\frac{1}{2}$ $\frac{1}{8}$	e material and ius have thei ies in the ratio the ratio 1 : 8 engths.

To Find : 4. A wire, 1 m long and weighing 2 g, will be in resonance with a frequency of 300 $\frac{l_1}{l_2}$ Hz. Find tension on stretching the wire. ? Given : Formula : 1 1 m = Μ 2 gm $= 2 \times 10^{-3} \text{ kg}$ = $= \frac{1}{2l}\sqrt{\frac{T}{m}}$ 300 Hz n n = To Find : Solution : Т ? Formula : $= \frac{1}{2l}\sqrt{\frac{T}{m}}$ n $= \frac{1}{2l}\sqrt{\frac{T}{m}}$ n $n_1 = \frac{1}{2l_1}\sqrt{\frac{T_1}{m}}$ Solution : ... $= \frac{2 \times 10^{-3}}{1}$ = 2 × 10⁻³ kg/m $\frac{M}{l}$ $\frac{1}{2n_1}\sqrt{\frac{T_1}{m}}$ *l*₁ = ... (i) *:*.. For second case, $= \frac{1}{2l}\sqrt{\frac{T}{m}}$ Now, n $n_2 = \frac{1}{2l_2} \sqrt{\frac{T_2}{m}}$ $300 = \frac{1}{2 \times l} \sqrt{\frac{T}{2 \times 10^{-3}}}$... $l_2 = \frac{1}{2n_2}\sqrt{\frac{T_2}{m}}$... (ii) :. $\sqrt{\frac{T}{2 \times 10^{-3}}}$ 600 [m is constant because both wires are made of same material] Divide (i) by (ii) $\frac{T}{2 \times 10^{-3}}$ $(600)^2 =$ *.*.. $\frac{l_1}{l_2} = \frac{2n_2}{2n_1} \sqrt{\frac{T_1}{m} \times \frac{m}{T_2}}$ Т $36 \times 10^4 \times 2 \times 10^{-3}$... Т ... = 720 N $= \frac{n_2}{n_1} \sqrt{\frac{T_1}{T_2}}$ 5. A stretched sonometer wire is in unison with a tuning fork, when the length is increased by 4 %, the number of beats $\left(\frac{2}{1}\right)\sqrt{\frac{1}{8}}$ heard per second is 6. find the frequency of the fork. Given : $\frac{l_1}{l_2}$ 0.707:1 l, $1.04 l_1$ = *:*. $\frac{l_2}{l_1}$:. 1.04, Ν 6s⁻¹ = To Find : ? n,

Form	ula :			5	Solu	tion :	mae	s of the wire
	n	_	$1 \overline{T}$			M	- mas	$V_{0} = \Lambda_{0}^{1}$
	11	_	2 <i>l</i> V m			Also	_	$\mathbf{v}\mathbf{p}$ – $At\mathbf{p}$
Solu	tion :					1 1100	,	M Alo
			$1 \overline{T}$			m	=	$\frac{1}{1} = \frac{1}{1}$
	n	=	$\overline{2l}\sqrt{\mathrm{m}}$. .	m	=	Αρ
Since	l,	>	l,					· T
then	n,	>	n,	I	Now	, V	=	$\sqrt{\frac{1}{m}}$
: п	$n_1 - n_2$	=	6 Hz					
<i>:</i> .	n ₂	=	n ₁ – 6			v	=	$\sqrt{\frac{1}{1}}$
	For t	wo w	ires of same mater	ial				γΑρ
	$n_1 l_1$	=	$n_2 l_2$			2	_	T
But,	n ₂	=	n ₁ – 6	•	••	V-	=	Αρ
and	l_2	=	$1.04 l_1$					Т
·•	$n_1 l_1$	=	$(n_1 - 6) (1.04 l_1)$		·•	А	=	$\overline{v^2 \rho}$
	n ₁	=	$(n_1 - 6) (1.04)$					Г 0.0
: 1	l.04 n ₁	- n ₁	= 6.24			А	=	$\frac{9.8}{()^2}$
·•	0.	04 n ₁	= 6.24					(68) ×7900
		n	= <u>6.24</u>		. . .	А	=	$2.683 \times 10^{-7} \text{ m}^2$
••		11	0.04	,	7	A tr	ansve	erse wave is produced
		n	= 156 Hz			strec	hed s	string 0.7 m long and fix
6	The	an a a d	of a transmore and			its er	nds. F	ind speed of transverse v
0.	unif	orm n	etal wire, when it	is under a		when	n it v tone c	of frequency 300 Hz
	tensi	ion of	1000 g wt. is 68	m/s. If the	Give	n :	ione e	or frequency 500 fiz.
	dens	ity of	metal is 7900 kg/m	³ . Find the		1	=	0.7 m
Civo	area	of cro	ss section of the w	ire.		n	=	300 Hz
Give	т	=	1000 g wt.	- -	To Fi	ind :		
		=	1000 × 10 ⁻³ kg wt			v	=	?
		=	$1 \times 9.8 \text{ N} = 9.8$	3 N	Form	ula:	=	n)
	v	=	68 m/s		Solu	v tion ·	_	1170
	ρ	=	7900 kg/m³		501u	v v	=	n λ
	ind •		_			In 2r	nd ove	ertone, 3 loops are forme
To Fi	ina .	=	?			1		3
To Fi	A					l	=	$\frac{1}{2}\lambda$
To Fi Form	A ula:							<u> </u>
To Fi Form	A ula:	_	$\sqrt{\frac{T}{T}}$			_		21
To Fi	A aula : v	=	$\sqrt{\frac{T}{m}}$		÷	λ	=	$\frac{2l}{3}$

Now, v =

$$v = n\left(\frac{2l}{3}\right)$$
$$v = 300\left(\frac{2}{3}\times0.7\right)$$
$$v = 140 \text{ m/s}$$

nλ

8. A uniform wire under tension, is fixed at its ends. If the ratio of tension in the wire to the square of its length is 360 dyne/cm² and fundamental frequency of vibration of wire is 300 Hz. Find its linear density.

Given :

:..

$\frac{\mathrm{T}}{l^2}$	=	360 dyne/cm ²
n	=	300 Hz
To Find :		
m	=	?
Formula :		

Fo

		1 T
n	=	$\overline{2l}\sqrt{m}$

Solution :

m

m

m

m

...

=

=

=

n	=	$\frac{1}{2l}\sqrt{\frac{\mathrm{T}}{\mathrm{m}}}$
n²	=	$\frac{1}{4l^2} \cdot \frac{T}{m}$
 m	=	$\frac{1}{4n^2} \cdot \left(\frac{T}{l^2}\right)$

m =
$$\frac{1}{4 \times (300)^2} \times \frac{360}{1}$$

90

90000 10^{-3}

10⁻³ g/cm 10⁻⁴ kg/m

9. A wire is in unison with a fork of frequency 250 Hz, when streched by a weight hanging vertically. On immersing the weight in water, the wire produces ten beats per second with the same fork. Calculate density of material of weight, Given :

When wire is stretched by a weight hanging vertically, $n_1 = 250$ Hz,

Frequency of wire when the weight is immersed in water producing 10 beats per second = n_2

$$n_2 = n_1 - 10 = 250 - 10 = 240 \text{ Hz}$$

 $\mathbf{\rho}_w = 1 \text{ g/cc}$

To Find :

...

$$\frac{n_1}{n_2} = \sqrt{\frac{\rho}{\rho - 1}}$$

Solution :

:.

...

$$\frac{\mathbf{n_1}}{\mathbf{n_2}} = \sqrt{\frac{\mathbf{p}}{\mathbf{p}-1}}$$
$$\frac{250}{240} = \sqrt{\frac{\mathbf{p}}{\mathbf{p}-1}}$$

$$\frac{25}{24} = \sqrt{\frac{\rho}{\rho - 1}}$$

Squaring both sides,

$$\frac{625}{576} = \frac{\rho}{\rho - 1}$$

$$\therefore \quad 625 \ (\rho - 1) = \quad 576 \ \rho$$

$$\therefore \quad 625 \ \rho - 576 \ \rho = \quad 625$$

$$\therefore \quad 49 \ \rho = \quad 625$$

$$\therefore \quad \rho = \quad \frac{625}{49}$$

$$\therefore \quad \rho = \quad 12.76 \ \text{g/cm}^3$$

ρ

=

10.	Two are re	simple harmonic progressive waves presented by		у	=	$4\cos\left(\frac{2\pi x}{60}\right)\sin 2\pi (100 t)$		
	y ₁ = 2	$2 \sin 2\pi \left(100t - \frac{x}{60} \right) $ cm and		Com y We o	paring = vet	(i) g above equation with, R sin (2 π t)		
	$y_2 = 2$	$2\sin 2\pi \left(100t + \frac{x}{60}\right) cm.$		VIC 8	(2πv)		
	The wave	vaves combine to from a stationary		4 cos	$\left(\frac{2\pi x}{60}\right)$	$\int = R$		
	i)	amplitude at antinode	But,	R	=	$2\pi \cos\left(\frac{2\pi R}{\lambda}\right)$		
	ii)	distance between adjacent node		λ	=	60 cm		
	iii) iv)	loop length wave velocity		Amp of R.	litude	at antinode is maximum value		
Give	n :	- (v)	i.e,	R is r	naxim	um when $\cos\left(\frac{2\pi x}{\lambda}\right) = 1$		
	У ₁	$= 2\sin 2\pi \left(100t - \frac{x}{60}\right) cm$		R	=	$4 \times 1 = 4 \text{ cm}$		
	У ₂	= $2\sin 2\pi \left(100t + \frac{x}{60}\right)$ cm	ii)	λ	=	60 cm		
To F	ind :			$\frac{\lambda}{4}$	=	$\frac{60}{4} = 15 \mathrm{cm}$		
	i) ii)	R = ? $\frac{\lambda}{2} = 2$.:.	Dista antir	ance b 10de =	etween successive node and 15 cm		
	iii)	$\begin{array}{c} 4 \\ 1 \\ \end{array} = \begin{array}{c} ? \end{array}$	iii)	1	=	length of loop		
Form	iv)	v = ?			=	$\frac{\lambda}{2} = \frac{60}{2}$		
	y	= $R \sin 2\pi nt$		1	=	30 cm		
wher	re, R	$= 2A\cos\left(\frac{2\pi x}{\lambda}\right)$	iv)	v	=	wave velocity = $n\lambda$		
Solu	tion :		·.	V	=	n λ		
i)	Resu	ltantant equation of wave is given		From	n equa	tion (i), we get,		
	by			n	=	100 Hz		
	у	$=$ $y_1 + y_2$		λ	=	60 cm		
		$-2 \sin 2\pi \left(100t \times 1\right)$		v	=	n λ		
		$-2\sin 2\pi \left(100t-\frac{1}{60}\right)$		v	=	100 × 60		
				v	=	6000 cm/s		
		$+2\sin 2\pi\left(100t+\frac{x}{60}\right)$	··	V	=	60 m/s		
÷	у	$= 2 \times 2 \sin 2\pi (100 \text{ t}) \cos 2\pi \left(\frac{x}{60}\right)$						

11.	The o given Find interf frequ interf	equat by y = the a fering tency fering	ion of a standing wave is = 0.02 cos (π x) sin (100 π t) m. Implitude of either wave , wavelength, time period, and wave velocity of waves.	12. Giver	In Melde's experiment, find weight added in the pan when number of loops on the string changes from 4 to 2. If initial tension on the string is 1960 dyne and mass of the pan in one gram.				
Give	1 :			0110	n	=	4		
01101	v	=	$0.02 \cos{(\pi x)} \sin{(100 \pi t)}$		P ₁	_	- n		
To Fi	nd :				P_2	-	2		
	Α	=	?		M_0	=	1 g		
	λ	=	?		T ₁	=	(M ₀ +	· M ₁)g	
	Т	=	?			=	1960	dyne	
	n	=	?		Τ.	=	(M. +	· M_)g	
	v	=	?	To Fi	nd ·		× 0	2/0	
Form	ula :			1011	м	_	2		
	у	=	$R \sin 2\pi nt$	T	1v1 ₂	-	÷		
wher	e,			Form	ula :				
	D		$2\pi x$		$T_{1}p_{1}^{2}$	=	$T_{2}p_{2}^{2}$		
	R	=	$2 \operatorname{A} \cos \frac{\lambda}{\lambda}$	Solut	ion :				
Calcu	lation	ı:			$T_{1}p_{1}^{2}$	=	T,p ²		
	y	=	$0.02 \cos{(\pi x)} \sin{(100 \pi t)}$						
. .	y	=	$0.02\cos\left(\frac{2\pi x}{2}\right)\sin[2\pi (50)t]$		T ₂	=	$\frac{T_1p_1^2}{p_2^2}$	-	
	C						,	,	· . ?
	Comp	baring	R sin 2=nt			_	(M ₀	$+M_{1})$	$\underline{g(4)^2}$
whor	у	-	K SIII 2 n III			-		$(2)^{2}$	
where	ς,							()	
	R	=	$2 \operatorname{A} \cos \frac{2\pi x}{\lambda}$	··	T ₂	=	16(N	$\frac{A_0 + M}{4}$	(1)g
We g	et,						1060	v 16	
А	=	ampli	tudeof interfering waves			=	1900	X 10	
	=	0.01 n	n		T		4		
λ	=	Wave	length of interfering waves		1 ₂	=	4 X I	1960	_
	=	2m	0		But (I	M ₀ + N	Л <u>2</u>)g	=	T_2
n	_	Eroau	oncy of interfering waves	. .	(.	M ₀ + N	М ₂)g	=	4 × 1960
11	_	FO II-	ency of interfering waves		(1	+ M ₂)	980	=	4 × 1960
-	-	50 П2				(M,	+ 1)	=	4×2
Т	=	Time	period interfering waves			M	+1	=	8
		1	1	•			2 – M	=	8_1
	=	— = n	$=$ $\frac{1}{50}$ $=$ 0.025				1112 М	_	\sim 1
V	=	Veloc	ity of interfering ways				1VI ₂	-	7 g wi
v	_	v e100	- E0 x 2						
	=	n k	- 50 x 2						
·•	V	=	100 m/s						

13.	In N arran were when	lelde' ged in form streto	's experiemnt, fo parallel position and ed along a length of ched by a weight of	rk was 16100ps of 7.2 m 10 g. If	÷	N N	=	<u>6×7×10</u> 7.2 58.33 Hz	=	$\frac{70}{1.2}$
Giver To Fi	mass the fr n : p L M M' nd :	of the reqeur = = = = = = =	e string is 14.4 × 10 ⁻¹ focy of tuning fork. 6 7.2 m 10 g 10 × 10 ⁻³ 10 ⁻² kg 14.4 × 10 ⁻² g 14.4 × 10 ⁻⁵ kg	² g, find	14. Give	Find an ai at on and temp [Inne n : l	the from r colur e end, speed eratur er dian = = =	equency of fif nn vibrating i , length of pi l of sound in e is 350 m/s. neter of pipe i 42.10cm 42.10 × 10 ⁻² m 0.4210 m	fth over n a pipo pe is 4 n air a s 3.5 cn	rtone of e closed 2.10 cm t room 1]
Form	N ula ·	=	?			v d	=	3.5 cm = 3	.5 × 10-2	² m
FOIII	n	=	$\frac{P}{2I}\sqrt{\frac{T}{m}}$		To Fi	nd : Freat	= 1ecv of	0.035 m fifth overtone	e n_ = ?	
Solut	ion : n For p	= arallel	$\frac{P}{2L}\sqrt{\frac{T}{m}}$, of fork	Form	ula : Func close n	lament d at or =	tal frequency ne end is giver	in air 1 by	column
	is giv	en by	position, nequency	OI IOIK	Solut	tion ·		4L		
<i>:</i> .	N N	=	$\frac{2.P}{2L}\sqrt{\frac{T}{m}}$			L L	= = =	<i>l</i> + 0.3 d 0.4210 + 0.3 x 0.42 10 + 0.01 0.4315 m	: 0.035 05	
	N	=	$\frac{P}{L}\sqrt{\frac{T}{m}}$	(i)	Now	,n	=	$\frac{V}{4L}$		
Now,	m	=	$\frac{M'}{l}$			n	=	$\frac{350}{4(0.4315)}$		
	m	=	$\frac{14.4 \times 10^{-5}}{7.2}$			n	=	$\frac{350}{4 \times 0.4315}$		
∴ Subst	m ituting	= 2 the v	2×10^{-3} kg/m values in (i), we get,			n 	=	202.78 Hz	1-	
	N	=	$\frac{6}{7.2}\sqrt{\frac{10^{-2} \times 9.8}{2 \times 10^{-5}}}$		∴ ∴	P th ov Frequ n ₅ n.	vertone iencey = =	e is given by n of fifth overt (2 × 5 + 1)n 11 n	_p = (2p one is,	+ 1)n
	N	=	$\frac{6}{7.2}\sqrt{49\times10^2}$			o n	=	11 × 202.78 2230.59 Hz 2230 59 Hz		
					••	¹¹ ₅	_	2230.39 IIZ		

15.	Two organ pipes, open at both ends, are sounded together and 5 beats are heard					Using (i), we get,						
	soun	aea to	gether and 5 b	eats are nearu	625	– n ₂	=	5				
	is 0.	.25 m	find the le	ength of the	·•	n ₂	=	620 Hz				
	other	pipe.	(Given : veloci	ty of sound in				v				
	air =	350 m	/s, end orrectio	on at one end =	Also,	n ₂	=	$2L_2$				
<u> </u>	0.015	m sar	ne for both pip	oes)				250				
Give	n :	_	0.25 m			620	=	350				
	¹ 1	_	$350 \mathrm{m/s}$					∠L ₂				
	v	_	550 m/ s			21	_	350				
n ₁ -	· 11 ₂	-	5	(••	$2L_2$	_	620				
	e	=	0.015 m same	for both pipes.				350				
10 F1	na:	_	2			L_2	=	2×620				
Болга	ι ₂	_	<u>:</u>					25				
Form	ula :					L_2	=	$\frac{33}{124}$	=	0.2823 m		
	n	=	V		••	T	_	124				
			2L		•	L ₂	_	$l_2 + 2e$				
Solu	ion :	1	tal fue au en en	of ourses wind	••	1 1	_	$L_2 - 2e$	0.02			
	runc	amen at bot	th ends	of organ pipe		l ₂	-	0.2625 -	0.05			
	open	ut bot				l ₂	=	0.2523 n	n			
	n	=	$\frac{V}{2I}$		16.	The	funda	mental f	reaue	ncv of a pipe		
	2L					closed at one end is unison with t						
	whom	0				close	ed at o	one end	is uni	ison with the		
	when	e	1+ 0			close thire	edato dove	one end rtone o	is uni of an	ison with the open pipe.		
	when L	e =	<i>l</i> + e			close thire Calc	ed at o d ove ulate f	one end rtone o the ratio	is uni of an of the	ison with the open pipe. eir lengths of		
	wher L	re = _{_1} < I	l + e L_2 then $n_1 > n_2$			close thire Calc air co	ed at o d ove ulate f olumn	one end rtone o the ratio	is uni of an of the	ison with the open pipe. eir lengths of		
n ₁	when L - n ₂	re = ₁ < I =	l + e L_2 then $n_1 > n_2$ 5	(i)	Give	close thire Calc air co n :	ed at o d ove ulate f olumn	one end rtone o the ratio	is uni of an of the	ison with the open pipe. eir lengths of		
n ₁	when L - n ₂ Since	re = < < I = e pipe i	l + e L_2 then $n_1 > n_2$ 5 s open at both e	(i) ends hence end	Give	close third Calc air co n : n ₀ when	ed at o d ove ulate t olumn = re	one end rtone c the ratio n _c	is uni of an of the	ison with the open pipe. eir lengths of		
n ₁	when L - n ₂ Since corre	$= \frac{1}{1} < I$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$	l + e L_2 then $n_1 > n_2$ 5 s open at both e is (2e)	(i) ends hence end	Give	close third Calc air co n: n ₀ when n ₂	ed at o d ove ulate f olumn = ce =	one end rtone c the ratio n _c frequen	is uni of an of the	ison with the open pipe. eir lengths of		
n₁ ∴	when L - n ₂ Since corre	re = < I = e pipe i ction i ct leng	l + e L_2 then $n_1 > n_2$ 5 s open at both e is (2e) gth of 1 st pipe	(i) ends hence end	Give	close third Calc air co n: n _o when n _o	ed at o d ove ulate f olumn = re =	ne end rtone o the ratio n _c frequen of open	is uni of an of the cy of t pipe	ison with the open pipe. eir lengths of		
n₁	when L - n ₂ Since corre L ₁	re = < I = pipe i ction i ct leng =	l + e L_2 then $n_1 > n_2$ 5 s open at both e is (2e) gth of 1 st pipe $l_1 + 2e$	(i) ends hence end	Give	close third Calc air co n: n _o when n _o n _c	ed at o d ove ulate t olumn = re = =	ne end rtone c the ratio n _c frequen of open fundan	is unit of an of the cy of t pipe netal	ison with the open pipe. eir lengths of third overtone freqeuncy of		
n₁ ∴	when L - n ₂ Since corre Corre	re = t ₁ < I = pipe i ction i ct lens = =	l + e L_2 then $n_1 > n_2$ 5 s open at both e is (2e) gth of 1 st pipe $l_1 + 2e$ $0.25 + 2 \times 0.01$	(i) ends hence end 15	Give	close third Calc air co n : n ₀ when n ₀ n ₀	ed at o d ove ulate f olumn = re = =	ne end rtone c the ratio n _c frequen of open fundan closed p	is unit of an of the cy of the pipe netal to pipe	ison with the open pipe. eir lengths of third overtone freqeuncy of		
n₁	when L - n ₂ Since corre Corre L ₁	re = < I = pipe i ction i ct lens = = =	l + e L_2 then $n_1 > n_2$ 5 s open at both e is (2e) gth of 1 st pipe $l_1 + 2e$ $0.25 + 2 \times 0.01$ 0.25 + 0.03	(i) ends hence end 15 = 0.28 m	Give To Fi	close third Calc air co n : n _o when n _o n _o	ed at o d ove ulate f olumn = re = =	ne end rtone o the ratio n _c frequen of open fundan closed p	is unit of an of the cy of the pipe netal b pipe	ison with the open pipe. eir lengths of third overtone freqeuncy of		
n₁	when L - n ₂ Since corre L ₁ L ₁	re = < I = pipe i ction i ct leng = = =	$l + e$ $L_2 \text{ then } n_1 > n_2$ 5 s open at both e is (2e) gth of 1 st pipe $l_1 + 2e$ $0.25 + 2 \times 0.01$ $0.25 + 0.03$ v	(i) ends hence end 15 = 0.28 m	Give To Fi	close third Calc air co n_{o} when n_{o} n_{c} nd : $\underline{L_{c}}$	ed at o d ove ulate f olumn = re = =	ne end rtone o the ratio n _c frequen of open fundan closed p	is uni of an of the cy of the pipe netal to pipe	ison with the open pipe. eir lengths of third overtone freqeuncy of		
n₁ ∴	when L - n ₂ Since corre Corre L ₁ L ₁	re = < < I = pipe i ction i ct leng = = = =	$l + e$ $L_{2} \text{ then } n_{1} > n_{2}$ 5 s open at both e is (2e) gth of 1 st pipe $l_{1} + 2e$ $0.25 + 2 \times 0.01$ $0.25 + 0.03$ $\frac{V}{2L_{1}}$	(i) ends hence end 5 = 0.28 m	Give To Fi	close third Calc air co n: n_o when n_o n_c nd: $\frac{L_c}{L_o}$	ed at o d ove ulate f olumn = ce = =	ne end rtone o the ratio n _c frequen of open fundan closed p ?	is uni of an of the cy of t pipe netal b bipe	ison with the open pipe. eir lengths of third overtone freqeuncy of		
n₁ ∴	when L - n ₂ Since corre Corre L ₁ L ₁	re = = pipe i ction i ct lens = = =	l + e L_2 then $n_1 > n_2$ 5 s open at both e is (2e) gth of 1 st pipe $l_1 + 2e$ $0.25 + 2 \times 0.01$ 0.25 + 0.03 $\frac{v}{2L_1}$	(i) ends hence end 15 = 0.28 m	Give: To Fi Form	close third Calc air co n_{o} when n_{o} n n n the constraints n_{c} n ula :	ed at o d ove ulate f olumn = re = =	ne end rtone of the ratio n _c frequen of open fundan closed p	is uni of an of the cy of t pipe netal t pipe	ison with the open pipe. eir lengths of third overtone freqeuncy of		
n₁ ∴	when L - n ₂ Since corre Corre L ₁ L ₁	re = < I = pipe i ction i ct leng = = = =	$l + e$ $L_{2} \text{ then } n_{1} > n_{2}$ 5 s open at both e is (2e) gth of 1 st pipe $l_{1} + 2e$ $0.25 + 2 \times 0.01$ $0.25 + 0.03$ $\frac{V}{2L_{1}}$ $\frac{350}{2L_{1}}$	(i) ends hence end 15 = 0.28 m	Give To Fi Form	close third Calc air co n n_{c} n_{c} nd : $\frac{L_{c}}{L_{0}}$ ula :	ed at o d ove ulate f olumn = ce = =	ne end rtone of the ratio n _c frequen of open fundan closed p ?	is uni of an of the cy of t pipe netal p pipe	ison with the open pipe. eir lengths of third overtone freqeuncy of		
n₁ ∴	when L - n ₂ Since corre L ₁ L ₁	re = = = pipe i ction i ct lens = = = =	$l + e$ $L_{2} \text{ then } n_{1} > n_{2}$ 5 s open at both e is (2e) gth of 1 st pipe $l_{1} + 2e$ $0.25 + 2 \times 0.01$ $0.25 + 0.03$ $\frac{v}{2L_{1}}$ $\frac{350}{2 \times 0.28}$	(i) ends hence end 15 = 0.28 m	Give To Fi Form	close third Calc air co n : n_o when n_c nd : $\frac{L_c}{L_o}$ ula : n	ed at o d ove ulate f olumn = re = = =	ne end rtone of the ratio n _c frequen of open fundan closed p ? <u>V</u> 2L	is uni of an of the cy of t pipe netal b pipe	ison with the open pipe. eir lengths of third overtone freqeuncy of		
n₁ ∴	when L - n ₂ Since corre L ₁ L ₁ n ₁	re = 1 1 < I = 2 pipe i ction i ct leng = = = =	$l + e$ $L_{2} \text{ then } n_{1} > n_{2}$ 5 s open at both e is (2e) gth of 1 st pipe $l_{1} + 2e$ $0.25 + 2 \times 0.01$ $0.25 + 0.03$ $\frac{V}{2L_{1}}$ $\frac{350}{2 \times 0.28}$ $\frac{350}{2 \times 0.28} = 0$	(i) ends hence end 15 = 0.28 m	Give To Fi Form Solut	close third Calc air co n "when n n n ton : $\frac{L_c}{L_0}$ ula : n	ed at o d ove ulate f olumn = ce = =	one end rtone of the ratio n_c frequen of open fundan closed p ? $\frac{V}{2L}$	is uni of an of the cy of t pipe netal h pipe	ison with the open pipe. eir lengths of third overtone freqeuncy of		
n₁ ∴	when L - n ₂ Since corre L ₁ L ₁ n ₁	re = < I = pipe i ction i ct lens = = = = =	$l + e$ $L_{2} \text{ then } n_{1} > n_{2}$ 5 s open at both e is (2e) gth of 1 st pipe $l_{1} + 2e$ $0.25 + 2 \times 0.01$ $0.25 + 0.03$ $\frac{v}{2L_{1}}$ $\frac{350}{2 \times 0.28}$ $\frac{350}{0.56} =$	(i) ends hence end 5 = 0.28 m	Give To Fi Form Solut	close third Calc air co n: n_o when n_o nd: $\frac{L_c}{L_o}$ ula: n 3rd c	ed at o d ove ulate f olumn = = = = = =	one end rtone of open n_c frequen of open fundan closed p ? $\frac{V}{2L}$	is unit of an of the cy of t pipe netal to pipe	ison with the open pipe. eir lengths of third overtone freqeuncy of		
n₁ ∴	when L - n ₂ Since corre L ₁ L ₁ n ₁	re = = = pipe i ction i ct lens = = = = = =	$l + e$ $L_{2} \text{ then } n_{1} > n_{2}$ 5 s open at both e is (2e) gth of 1 st pipe $l_{1} + 2e$ $0.25 + 2 \times 0.01$ $0.25 + 0.03$ $\frac{V}{2L_{1}}$ $\frac{350}{2 \times 0.28}$ $\frac{350}{0.56} = 625 \text{ Hz}$	(i) ends hence end 15 = 0.28 m 625 Hz	Give To Fi Form Solut	close third Calc air co n n_{o} m n_{c} nd : $\frac{L_{c}}{L_{o}}$ ula : n tion : 3rd c	ed at o d ove ulate t olumn = = = = = =	one end rtone of the ratio n_c frequen of open fundan closed p ? $\frac{V}{2L}$	is unit of an of the cy of the pipe netal to pipe	ison with the open pipe. eir lengths of third overtone freqeuncy of		
n₁ ∴	when L - n ₂ Since corre Corre L ₁ L ₁ n ₁	re = < I = pipe i ction i ct lens = = = = = =	$l + e$ $L_{2} \text{ then } n_{1} > n_{2}$ 5 s open at both e is (2e) gth of 1 st pipe $l_{1} + 2e$ $0.25 + 2 \times 0.01$ $0.25 + 0.03$ $\frac{v}{2L_{1}}$ $\frac{350}{2 \times 0.28}$ $\frac{350}{0.56} = 625 \text{ Hz}$	(i) ends hence end 5 = 0.28 m 625 Hz	Giver To Fi Form Solut	close third Calc air co n: n_{o} when n_{c} nd: $\frac{L_{c}}{L_{o}}$ ula: n 3rd co n_{o}	ed at o d ove ulate t olumn = = = = = = = =	one end rtone of the ratio n_c frequen of open fundan closed p ? $\frac{V}{2L}$ the of open $4\left(\frac{v}{2L}\right)$	is uni of an of the cy of the pipe netal b pipe	ison with the open pipe. eir lengths of third overtone freqeuncy of		

	Funda one er	d pipe at	<i>.</i>	2e(n ₁ – n ₂	<u>)</u> =	2 ^l ;	$l_2 - n_1 l_1$				
	n _c	=	$\frac{v}{4L_c}$			÷			e =	$\frac{n_2}{2(}$	$n_1 - n_2$)
\therefore	n _c :	=	n _o			18.	Inaı	resona	nce tu	be exp	eriment	atuning
•••	v 4L _c	=	$4\left(\frac{v}{2L_{o}}\right)$				fork long cm l	resona and ag ong. (ates w gain re Calcul	th an a esonate ate the	ir colur s when e wavel	nn 10 cm , it is 32.2 ength of
	L _o		0			Civo	wave	e and t	the en	d corre	ection.	
<i>:</i> .	L _c	=	8			Give	п. 1.	=	10 cn	ı		
	т		1				l,	=	32.2 1	n		
. .	$\frac{L_c}{I}$:	=	$\frac{1}{8}$			To Fi	ind :		_			
	L ₀		0				λ	=	?			
	<u>L</u>	=	$1 \cdot 8$			Form	e ula:	—	:			
••	L _o		1.0				i)	L	=	<i>l</i> + e		
17	Show	that f	for a nin	e open at h	oth ands					$l_{2} - 3l_{2}$	1	
17.	the en	d cor	rection i	s	oth enus		ii)	e	=	2	1	
		n.1.	- n .1.			Solu	tion :					
	e =	$\frac{n_2 v_2}{2(n_1)}$	$\frac{-n_{1}n_{1}}{-n_{2}}$				L	=	<i>l</i> + e			
Calu	Lion .	-("1	¹¹ 2)				т	_	1 + 0	_ λ		(;)
501u						•••	L ₁	—	$l_1 + e$	- 4		(1)
	Let,	1	= Vibra	ting longth	s of nine		т		1	3λ	,	()
	r_1 and n_2 and	¹ 2	= Reso	nating freqe	uncy		L ₂	=	l_2 +e	= 4	-	(11)
	N and	= 11 ²	Velocity	of sound in	a air		Subt	ract eq	uatior	n (i) fro	m equa	tion (ii)
	v e	=	Find cor	rection	i all		(1)	\sim (1		_	<u>3</u> λ	λ
i)	E For th	e first	t resonar	nce		•••	(l ₂ +	$e) - (l_1)$	т e)	-	4	- 4
1)	101 th	C 1115	t resonar					(1			λ	
	n, ·	=	$\frac{V}{2(1+2)}$	<u>,</u>		•		$(l_2$	$-l_{1}$	=	2	
	1		$2(l_1 + 2)$	e)			λ	=	$2(l_2 -$	l ₁)		
<i>:</i> .	v	=	$2n_1(l_1 +$	2e)	(i)			=	2(32.2	2 – 10.0))	
ii)	For the	e seco	ond reso	nance			λ	=	2(22 44.4 c	2) rm		
			v			••	70		1 2)1)1		
	n ₂	=	$\frac{1}{2(l_2+2)}$	e)		Now	,e	=	$\frac{l_2 - c_1}{2}$	<u>ⁿ1</u>		
•	v	=	2n (1 +	2e)	(ii)				(00.0) 0(1)	2)	
•••	From	(i) an	d (ii) we	_c)	(11)		e	=	(32.2	$\frac{2}{2} - 3(10)$	<u>)</u>	
ш)	. /1		- (II) WE	g(l + 2)						2		
	$n_1(l_1)$	+ 2e)	=	$n_2(l_2 + 2e)$		·.	e	=	$\frac{2.2}{2}$			
	$n_1 l_1 + 2a_1 r_2$	2e n ₁	. =	$n_2 l_2 + 2e n_2$				_	2			
<u></u>	2e n ₁ -	- 2e n ₂	2 =	$n_2 l_2 - n_1 l_1$		·•	e	=	1.1 CI	n	_	